BRAF/MEK inhibitors promote CD47 expression that is reversible by ERK inhibition in melanoma
نویسندگان
چکیده
The expression of CD47 on the cancer cell surface transmits "don't eat me" signalling that not only inhibits phagocytosis of cancer cells by phagocytes but also impairs anti-cancer T cell responses. Here we report that oncogenic activation of ERK plays an important role in transcriptional activation of CD47 through nuclear respiratory factor 1 (NRF-1) in melanoma cells. Treatment with BRAF/MEK inhibitors upregulated CD47 in cultured melanoma cells and fresh melanoma isolates. Similarly, melanoma cells selected for resistance to the BRAF inhibitor vemurafenib expressed higher levels of CD47. The increase in CD47 expression was mediated by ERK signalling, as it was associated with rebound activation of ERK and co-knockdown of ERK1/2 by siRNA diminished upregulation of CD47 in melanoma cells after exposure to BRAF/MEK inhibitors. Furthermore, ERK1/2 knockdown also reduced the constitutive expression of CD47 in melanoma cells. We identified a DNA fragment that was enriched with the consensus binding sites for NRF-1 and was transcriptionally responsive to BRAF/MEK inhibitor treatment. Knockdown of NRF-1 inhibited the increase in CD47, indicating that NRF-1 has a critical role in transcriptional activation of CD47 by ERK signalling. Functional studies showed that melanoma cells resistant to vemurafenib were more susceptible to macrophage phagocytosis when CD47 was blocked. So these results suggest that NRF-1-mediated regulation of CD47 expression is a novel mechanism by which ERK signalling promotes the pathogenesis of melanoma, and that the combination of CD47 blockade and BRAF/MEK inhibitors may be a useful approach for improving their therapeutic efficacy.
منابع مشابه
BRAF inhibitor-associated ERK activation drives development of chronic lymphocytic leukemia.
Patients with BRAFV600E/K-driven melanoma respond to the BRAF inhibitor vemurafenib due to subsequent deactivation of the proliferative RAS/RAF/MEK/ERK pathway. In BRAF WT cells and those with mutations that activate or result in high levels of the BRAF activator RAS, BRAF inhibition can lead to ERK activation, resulting in tumorigenic transformation. We describe a patient with malignant melano...
متن کاملMolecular pathways: adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer.
The central role of the BRAF-MEK-ERK pathway in controlling cell fate has made this pathway a primary target for deregulated activation in cancer. BRaf is activated by Ras proteins allowing Ras oncogenes to constitutively activate the pathway. Activating BRaf mutations are also frequent in several cancers, being the most common oncogenic mutation in thyroid carcinoma and melanoma. There are cur...
متن کاملEffects of BRAF mutations and BRAF inhibition on immune responses to melanoma.
Malignant melanoma is associated with poor clinical prognosis; however, novel molecular and immune therapies are now improving patient outcomes. Almost 50% of melanomas harbor targetable activating mutations of BRAF that promote RAS-RAF-MEK-ERK pathway activation and melanoma proliferation. Recent evidence also indicates that melanomas bearing mutant BRAF may also have altered immune responses,...
متن کاملRole of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression.
Heterogeneous expression of melanocytic antigens occurs frequently in melanomas and represents a potent barrier to immunotherapy. We previously showed that coordinated losses of several melanocytic antigens are generally attributable to down-regulation of antigen gene expression rather than irreversible mutation. Treatment of melanoma cells with mitogen-activated protein kinase (MAPK)/extracell...
متن کاملLoss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.
Melanoma is a disease characterized by lesions that activate ERK. Although 70% of cutaneous melanomas harbor activating mutations in the BRAF and NRAS genes, the alterations that drive tumor progression in the remaining 30% are largely undefined. Vemurafenib, a selective inhibitor of RAF kinases, has clinical utility restricted to BRAF-mutant tumors. MEK inhibitors, which have shown clinical ac...
متن کامل